МОЖЛИВОСТІ ПРАКТИЧНОГО ВИКОРИСТАННЯ КРИСТАЛІВ ЛЬОДУ У ПОГЛИНАННІ АЕРОЗОЛЬНИХ ЧАСТОК
DOI:
https://doi.org/10.30836/igs.2522-9753.2024.322267Ключові слова:
сніг, фільтрація, аерозолі,, пило-газова сумішАнотація
У статті пропонуються аргументи щодо можливості практичного використання снігових кристалів, у системах кондиціонування повітря для уловлювання дрібнодисперсних аерозолів. Ефективність уловлювання можна підвищувати спрямовано варіюючи електричні властивості частинок снігу. Такий сніговий генератор на шляху пилогазової суміші може бути використаний як аналог скрубера (проте, з більшою ефективністю уловлювання), електрофільтра (проте, з можливістю роботи з вибухонебезпечними сумішами) і плазмохімічної установки для очищення газів і дезактивації домішок, що містяться в них. Незважаючи на різноманітність використовуваних в даний час способів очищення та кондиціонування повітря, уловлювання дрібнодисперсних частинок радіусом 0.01 мкм < r <1 мкм (т.зв. "проміжок Грінфілда") продовжує залишатися серйозною проблемою.
Посилання
Tkachenko. E.Y., Varzatskii О.А., Lozovoy М.А., 2015. "Cold combustion" as a new method of toxic waste destruction Science Rise. Vol. 5, No. 10. Pp. 106–110. (In Russian). http://dx.doi.org/10.15587/2313-8416.2015.42289
Alvarez-Aviles L., Simpson W.R., Douglas T.A., Sturm M., Perovich D., Domine F., 2008. Frost flower chemical composition during growth and its implications for aerosol production and bromine activation. J. Geophys. Res. Vol. 113. D21304. https://doi.org/10.1029/2008JD010277
Bartels-Rausch T., Jacobi H.-W., Kahan T. F., Thomas J.L., Thomson E.S., Abbatt J.P.D., Ammann M., Blackford J. R., Bluhm H., Boxe C., Domine F., Frey M. M., Gladich I., Guzmán M. I., Heger D., Huthwelker Th., Klán P., Kuhs W. F., Kuo M. H., Maus S., Moussa S. G., McNeill V. F., Newberg J. T., Pettersson J. B. C., Roeselová M., and Sodeau J. R., 2014. A review of air–ice chemical and physical interactions (AICI): liquids, quasi-liquids, and solids in snow. Atmos. Chem. Phys. Vol. 14. Pp. 1587–1633. https://doi.org/10.5194/acp-14-1587-2014
Breiling M., Bacher M., Sokratov S., Best F.G., 2012. Patent WO2011029115 Method and device for producing snow. Pub. No.: US 2012/0193440 A1 Pub. Date: Aug. 2, 2012
Carnuth W., 1967. Zur Abhaengigheit des Aerosol Partikel Spektrum von meteorologischen Vorgaengen und Zustaende. Arch. f. Meteor. Geophys. Biokl. Ser. A. Vol. 16. Pp. 321–343. https://doi.org/10.1007/BF02246477
Cragin J.H., Hewitt A.D., 1993. Aerosol Scavenging by falling snow. 50th eastern snow conf., 61st western snow conference, Quebec City, Pp. 307–314.
Dong Y., Hallett J., 1992. Charge separation by ice and water drops during growth and evaporations. J. Geophys. Res. Vol. 97 (D18). Pp. 20361–20371. https://doi.org/10.1029/92JD02075
Findeisen W., 1940. On the origin of storm electricity. Meteorol. Zh. Vol. 57, No. 6. Pp. 201–215.
Finnigan W.G., Pitter R.L., 1988. A postulate of electric multipoles in growing ice crystals: their role in the formation of ice crystal aggregates. Atmospheric Research. Vol. 22, Pp. 235–250. https://doi.org/10.1016/0169-8095(88)90019-1
Finnegan W.G., Pitter R.L., Young L.G., 1991. Preliminary study of coupled oxidation-reduction reactions of included ions in growing ice crystals. Atmospheric Environment. Vol. 25A, No. 11, Pp. 2531–2534. https://doi.org/10.1016/0960-1686(91)90169-8
Finnegan W.G., Pitter R.L., 1997. Ion-induced charge separations in growing single ice crystals: Effects on growth and interaction processe., Journal of Colloid and Interface Science. Vol. 189. Pp. 322. https://doi.org/10.1006/jcis.1997.4829
Finnegan W.G., Pitter R.L., Hinsvark B.A., 2001. Redox Reactions in Growing Single Ice Crystals: A Mechanistic Interpretation of Experimental Results. Journal of Colloid and Interface Science. Vol. 242. Pp. 373–377. https://doi.org/10.1006/jcis.2001.7825
Graedel T.E., Franey J.P., 1975. Field measurements of submicron aerosol washout by snow. Geophys. Res. Lett. Vol. 2. Pp. 325–328. https://doi.org/10.1029/GL002i008p0032
Gonçalves Jr.S.J., Evangelista H., Weis J., Tristan H.H., China S., Müller S., Marques M.M., de Magalhães Neto N., Passos H.R., Sampaio M., Simões J.C., de Oliveira B.V.X., Yamamoto C.I., Laskin A., Gilles M.K., Godoi R.H.M., 2023. Stratospheric ozone depletion in the Antarctic region triggers intense changes in sea salt aerosol geochemistry. Commun Earth Environ. Vol. 4. P. 77. https://doi.org/10.1038/s43247-023-00739-z
Greenfield S.M., 1957. Rain scavenging of radioactive particulate matter from the atmosphere. J. Meteorol. Vol. 14, No. 2. Pp. 115–125. https://doi.org/10.1175/1520-0469(1957)014<0115:RSORPM>2.0.CO;2
Gross G.W., 1968. Some effects of trace inorganics on the ice/water system. In: Trace Inorganics in Water. Advances in Chemistry Series, 73. American Chemical Society, Washington, D.C., Pp. 27–97.
Industrial Ventilation Design Guidebook., 2001. (Eds. H. Goodfellow and E. Tahti). Academic Press, Vol. 1. 1519 p.
Industrial Ventilation Design Guidebook., 2021. (Eds. H. Goodfellow and Yi. Wang). Academic Press, Vol. 2. 713 p.
Itagaki K., Koenuma S., 1962. Altitude distribution of fallout contained in rain and snow. J. Geophys. Res. Vol. 67. Pp. 3927–3933. https://doi.org/10.1029/JZ067i010p03927
Libbrecht K.G., 2005. The physics of snow crystals. Reports on Progress in Physics. Vol. 68, No. 4. P. 855–895. https://doi.org/10.1088/0034-4885/68/4/R03
Magono C., Endoh T., Hariyama T., Kuboda S., 1974. A measurement of scavenging effect of falling snow crystals on the aerosol concentration. J. Meteor. Soc., Japan. Vol. 52. Pp. 407–416. https://doi.org/10.2151/jmsj1965.52.5_407
Magono C., Endoh T.. Itasaka M., 1975. Observation of aerosol particles attached to falling snow crystals. J. Fac. Sci., Hokkaido Universit., Vol. 4. Pp. 103–119.
Magono C., Endoh T., Ueno F., Kubota S., Itasaka M., 1979. Direct observations of aerosols attached to falling snow crystals. Tellus. Vol. 3I. Pp. 102–114. https://doi.org/10.3402/tellusa.v31i2.10415
Martin J.J., Wang P.K., Pruppacher H.R., 1980. A theoretical study of the effect of electric charges on the efficiency with which aerosol particles are collected by simple ice crystal plates. J. Colloid interface. Sci. Vol. 78. Pp. 44–56. https://doi.org/10.1016/0021-9797(80)90494-4
Miller N.L, Wang P.K., 1991. A theoretical determination of the collection rates of aerosol particles by falling ice crystal plates and columns. Atmospheric Environment. Vol. 25, No. 11. Pp. 2593–2606. https://doi.org/10.1016/0960-1686(91)90177-9
Murakami M., Hiramatsu C., Magono C., 1981. Observation of aerosol scavenging by falling snow crystals at two sites of different heights. J. Met. Soc. Japan. Vol. 59. Pp. 763–811. https://doi.org/10.2151/JMSJ1965.59.5_763
Murakami M., Kimura T., Magono C., Kikuchi K., 1983. Observation of precipitation scavenging for water-soluble particles. J. Met. Soc. Japan. Vol. 61. Pp. 346–358. https://doi.org/10.2151/jmsj1965.61.3_346
Murakami M., Kikuchi K., Magono C., 1985. Experiments of aerosol scavenging by natural snow crystals. Part I. Collection efficiency of uncharged snow crystals for micron and submicron particles. J. Met. Soc. Japan. Vol. 63. Pp. 119–129. https://doi.org/10.2151/jmsj1965.63.1_119
Murakami M., Kikuchi K., Magono C., 1985. Experiments of aerosol scavenging by natural snow crystals. Part II Attachment rate of 0.1 μm diameter particles to stationary snow crystals. J. Met. Soc. Japan. Vol. 63. Pp. 130–135. https://doi.org/10.2151/JMSJ1965.63.1_130
Nakaya U., 1954.Snow Crystals: Natural and Artificial. Cambridge: Harvard University Press,
Nelson J., Baker M., 2003. Charging of ice-vapor interfaces: applications to thunderstorms. Atmos. Chem. Phys. Vol. 3. Pp. 1237–1252. https://doi.org/10.5194/acp-3-1237-2003
Pitter R.L., Finnegan W.G., 2010. Mechanism of single ice crystal growth in mixed clouds. Atmospheric Research. Vol. 97, No. 4. Pp. 438–445. https://doi.org/10.1016/j.atmosres.2010.05.012
Radke L.F., Hobbs P.V., Eltgroth M.W., 1980. Scavenging of Aerosol Particles by Precipitation. J. Appl. Meteor. Vol. 19. Pp. 715–722. https://doi.org/10.1175/1520-0450(1980)019%3C0715:SOAPBP%3E2.0.CO;2
Reiter R. Felder, 1964. Stroeme und Aerosole, Verlag D. Steinkopff, Darmstadt, 603 p.
Reiter R., Carnuth W., 1965. Washout balance between 700 and 3000 m above sea level. Preprints, Int. Conf. on Cloud Phys. Tokyo and Sapporo, Pp. 390–394.
Reiter R., Carnuth W., 1969. Washout Untersuchungen an Fallout Partikel in der unteren Troposphaere. Arch. f. Meteor., Geophys., Biokl. Ser. A. Vol. 18. Pp. 111–146. https://doi.org/10.1007/BF02247867
Sauter D.P., Wang P.K., 1989. An Experimental Study of the Scavenging of Aerosol Particles by Natural Snow Crystals. J. Atmos. Sci. Vol. 46. Pp. 1650–1655. http://dx.doi.org/10.1175/1520-0469(1989)046%3C1650:AESOTS%3E2.0.CO;2
Simpson W.R., Brown S.S., Saiz-Lopez A., Thornton J A., Glasow R.A., 2015. Tropospheric Halogen Chemistry: Sources, Cycling, and Impacts. Сhem. Rev. Vol. 115 (10). Pp. 4035–4062.
Takahashi T., 1973. Electrification of growing ice crystal. J. Atmos.Sci. Vol. 30. Pp. 1220–1224. https://doi.org/10.1175/1520-0469(1973)030%3C1220:EOGIC%3E2.0.CO;2
Takenaka N., Ueda A., Daimon T., Bandow H., Dohmaru T., Maeda Y., 1996. Acceleration mechanism of chemical reaction by freezing: the reaction of nitrous acid with dissolved oxygen. J. Phys. Chem. Vol. 100, No. 32. Pp. 13874–13884. https://doi.org/10.1021/jp9525806
Tkachenko. E.Y., 2017. Possible role of electric forces in bromine activation during polar boundary layer ozone depletion and aerosol formation events. Atmos. Res. Vol. 196. Pp. 1–7. http://dx.doi.org/10.1016/j.atmosres.2017.05.012
Tkachenko E.Y., Kozachkov S.G., 2012. Possible contribution of triboelectricity to snow – air interactions. Env. Chemistry. Vol. 9, No. 2. Pp. 109–115. http://dx.doi.org/10.1071/EN10074
Tkachenko K.Y., Jacobi H.W., 2024. Electrical charging of snow and ice in polar regions and the potential impact on atmospheric chemistry. Env. Science: Atmosphere. Vol. 4. Pp. 144–163. https://doi.org/10.1039/D3EA00084B
Wang P.K., Lin H., 1995. Comparison of model results of collection efficiency of aerosol particles by individual water droplets and ice crystals in a subsaturated atmosphere. Atmospheric Research. Vol. 38. Pp. 381–390. https://doi.org/10.1016/0169-8095(95)00007-E
Wang P.K., 2002. Comparison of collection efficiency of aerosol particles by individual water droplets, ice plates and ice columns In: Ice Microdynamics. Academic Press, Science, Pp. 178–188. https://doi.org/10.1016/0169-8095(95)00007-E
Wang P.K., Pruppacher H.R., 1980. On the efficiency with which aerosol particles of radius less than 1 μm are collected by columnar ice crystals. Pure and Applied Geophysics. Vol. 118, No. 2. Pp. 1090–1108. https://doi.org/10.1007/BF01593052
Workman E.J., Reynolds S.E., 1950. Electrical phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity, Phys. Rev., Vol. 78, Pp. 254–259. ttps://doi.org/10.1103/PhysRev.78.254
Young K.C., 1993. Microphysical Processes in Clouds. Oxford Univ. Press, New York,
Zhang R., Pitter R.L., 1991. A numerical simulation of aerosol scavenging rate by simple ice crystals. J. Geophys. Res.: Athmospher. Vol. 96, iss. D12. Pp. 22491–22500. https://doi.org/10.1029/91JD02351