ЗАГАЛЬНІ ТА РЕГІОНАЛЬНІ ПРОБЛЕМИ ЛІТОЛОГІЇ / ОБЩИЕ И РЕГИОНАЛЬНЫЕ ПРОБЛЕМЫ ЛИТОЛОГИИ

УДК 550.4:550.93:549.752.143 (477)

А. А. Андреев¹, О. В. Зинченко², А. В. Андреев², Л. И. Константиненко³, С. П. Савенок², Е. А. Хлонь², И. И. Аширова²

ВОЗРАСТ И СОСТАВ ОБЛОМОЧНОГО МОНАЦИТА ИЗ ОТЛОЖЕНИЙ ВЕНДА И НИЖНЕГО ПАЛЕОЗОЯ ПОДОЛЬСКОГО ПРИДНЕСТРОВЬЯ

A. A. Andreiev, O. V. Zinchenko, A. V. Andreiev, L. I. Konstantinenko, S. P. Savenok, E. A. Hlon, I. I. Ashyrova

AGE AND COMPOSITION OF DETRITAL MONAZITE FROM DEPOSITS OF VENDIAN AND LOWER PALEOZOIC OF PODOLIAN TRANSNISTRIA

Вивчено вміст Sr, Y, Pb, Th, U в детритових монацитах з осадових порід венд-нижньопалеозойського розрізу Подільского Придністров'я. Методом загального свинцю оцінено вік кожного кристалу та побудовані вікові спектри монацитів для п'яти проб із послідовних стратиграфічних одиниць венда і по одній пробі із відкладів кембрію та ордовіка (всього вивчено склад 780 кристалів). Встановлено, що в осадках венда монацити неопротерозойського віку вперше появляються в джурджевський час. Їх роль суттєво зростає в утвореннях верхнього венда і досягає максимуму (~67%) в пісковиках ордовіка.

Ключові слова: монацит, вік, геохімія, осадові утворення, венд, Україна.

Изучено содержание Sr, Y, Pb, Th, U в детритовых монацитах из осадочных пород венд-нижнепалеозойского разреза Подольского Приднестровья. Методом общего свинца оценен возраст каждого кристалла и построены возрастные спектры монацитов для пяти проб из последовательных стратиграфических единиц венда и по одной пробе из осадков кембрия и ордовика (всего 780 кристаллов). Установлено, что в осадках венда монациты неопротерозойского возраста впервые появляются в джурджевское время. Их роль существенно возрастает в образованиях верхнего венда и достигает максимума (~67% от исследованных кристаллов) в песчаниках ордовика.

Ключевые слова: монацит, возраст, геохимия, осадочные породы, венд, Украина.

The compositions of detrital monazites from deposits of Vendian – Lower Paleozoic sequences of Podolian Transnistria are studied. Each monazite crystal has been dated by Th-U-total Pb method and age spectra of monazites obtained for 7 samples from Vendian, Cambrian and Ordovician strata sequences (total amount 780 crystals). It is established that a younger monazites appeared firstly at Dgurdgev time. Their role increases significantly in Upper Vendian sequences and peaks (67%) in the Ordovician sandstones.

Keywords: monazite, age, geochemistry, sediments, Vendian, Ukraine.

ВВЕДЕНИЕ

Обнаружение в кайнозой-антропогеновых осадочных породах, развитых на территории Украинского щита (УЩ) и его склонов, цирконов и монацитов с изотопным возрастом менее 1,5 млрд лет (в дальнейшем молодых цирконов и монацитов) [1, 3, 4, 5, 8, 9, 11] сильно пошатнуло давно и прочно устоявшееся мнение о формировании осадочного чехла платформенной части Украины главным образом за счет денудации ее кристаллического фундамента, имеющего (по крайней мере в пределах Украины) архей-палеопротерозойский возраст. Окончательно вывод о внещитовом происхождении молодых цирконов и монацитов, о полихронности и гетерогенности их материнских источников был сделан почти одновременно и независимо на основании результатов определения возраста монацитов из песчаников среднего девона [3, 4] и цирконов из полимик-

товых песчаников полесской серии позднего рифея [11] Волыни. Относительное количество молодых монацитов (~98%) в девонских песчаниках и цирконов (~52%) в песчаниках рифея этого региона Украины превышало все возможные допущения о поступлении минералов в осадки из реальных или гипотетических зон тектоно-магматической активизации западной части УЩ в позднем протерозое и нижнем палеозое. В обоих случаях был сделан вывод о значительном (многие сотни и даже тысячи километров) удалении источников, из которых могли поступать акцессорные минералы к месту седиментации. В частности, в девонские песчаники Волыно-Подольскоко прогиба молодые монациты, согласно [4], могли попасть из районов денудации Мармарошского массива Карпат, имеющих подходящий возраст в диапазоне 0,7-0,4 млрд. лет. Для молодых цирконов разных возрастных групп из рифейских песча-

© А.А. Андреев, О.В. Зинченко, А.В. Андреев, Л.И. Константиненко, С.П. Савенок, Е.А. Хлонь, И.И. Аширова, 2012

ников Волыни намечается несколько коренных источников, предположительно расположенных в западной части Балтийского щита и в пределах Свеконорвежского пояса [11].

В настоящей работе излагаются результаты изучения монацитов, выделенных из терригенных образований юго-восточной (Приднестровской) части Волыно-Подольского осадочного бассейна, известной под названием Могилев-Подольский выступ щита [6], где вендские и нижнепалеозойские отложения прекрасно обнажены и доступны для представительного опробования. Разрез Подольского Приднестровья детально изучен [6] и может представлять идеальный полигон для исследования закономерностей изменения возрастных и геохимических характеристик обломочных монацитов, как индикаторов условий формирования осадочных бассейнов.

ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЯ

Опробованы разнозернистые песчаники венда (снизу вверх по разрезу): грушкинской свиты, ольчедаевских, ломозовских и ямпольских слоев могилевской свиты, бернашевских слоев ярышевской свиты, джурджевских слоев нагорнянской свиты, студеницкой свиты, а также хмельницкой свиты кембрия и гораевской свиты ордовика. Места отбора и краткая характеристика проб указаны в табл. 1.

Всего из упомянутых осадочных образований выделены и исследованы 780 отдельных

кристаллов монацита (в среднем около 100 кристаллов для каждой пробы). Для каждого кристалла рентген-флуоресцентным методом определено содержание Y, Sr. Pb, Th, U. Методом общего свинца оценен возраст каждого кристалла и получены возрастные спектры монацитов для всех изученных объектов. Методика исследования состава и оценки возраста отдельных кристаллов обломочного монацита изложена в ранее опубликованных работах авторов [2, 7]. Аналитический хронологический материал представлен в виде гистограмм, построенных в одном и том же масштабе (рис. 1) с интервалом 100 млн лет. Обобщенные геохимические данные сведены в таблицу 2.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

В осадочных породах базальных горизонтов венда (рис. 1, б, в, г), залегающих непосредственно на кристаллических породах УЩ (грушкинская, могилевская и ярышевская свиты), единственными являются популяции монацитов древнейших пород юго-западной окраины Восточно-Европейской платформы (ВЕП) неоархейского и палеопротерозойского возраста (2,5–1,6 млрд лет). Любопытно, что верхний возрастной интервал монацитов порядка 1,6 млрд лет в отложениях трех этих ярусов венда Подолии отвечает глобальной границе позднего палеопротерозоя — нижнего рифея — начальному этапу формирования осадочного чехла на поверхности ВЕП. Согласно [6],

Таблица 1. Стратиграфическая привязка и краткая характеристика проб.

Система	Серия	Свита	Слои	№№ проб	Порода	Место отбора	Координаты
Ордовикская	Молодовская	Гораевская		Пд-10	Песчаник известковистый желтовато-серый, рыхлый	Баковский наскальный монастырь	N 48° 35′ 08,5″ E 26° 59′ 53,8″
Кембрийская	Балтийская	Хмельницкая		Пд-9	Песчаник тонкослоистый зеленовато-серый, массивный	с. Китайгород	N 48° 38′ 18,5″ E 26° 46′ 56,4″
Вендская	Каниловская	Студеницкая		Пд-8	Песчаник светло- серый массивный	с. Китайгород	То же
	Могилев- Подольская	Нагорнян- ская	Джурджев- ские	Пд-11	Песчаник разнозернистый светло-желтый	с. Миньковцы, правый склон р. Ушица	N 48° 50′ 36,8″ E 27° 06′ 38,5″
		Ярышевская	Бернашов- ские	Пд-14в	Песчаник среднегрубо зернистый, зеленый с темными прослоями	г. Ямполь, карьер	N 48° 35′ 16,6″ E 27° 27′ 54,1″
		Могилевская	Ямпольские	Пд-13-2	Песчаник светло- серый массивный	То же	То же
	Волынская	Грушкинская		Пд-15	Конгломераты буро-коричневые, рыхлые	В. Ольчедаев, левый берег р. Лядова, старый карьер	N 48° 44′ 27,1″ E 27° 41′ 48,2″

Таблица 2. Средние значения содержания элементов-примесей и возраста в молодых (а) и древних (б) популяциях монацита из венд-палеозойских осадочных образований Запада Украины

Образец	Колич.	Содержания в г/т					Возраст,
Свита	крист.	Sr	Y	U	Th	Pb	млн лет
		а					
ДВ-1* Повчанская серия (средний девон) [5]	108	98 108	15400 7600	3840 1910	32500 12000	1100 360	533 42
ДВ-2* Повчанская серия (средний девон) [5]	149	78 49	17100 4930	5200 1900	27300 5400	1500 350	730 67
Пд-10 Гораевская (ордовик)	95	195 231	10700 5430	1100 1060	26500 11100	990 380	748 230
Пд-8 Студеницкая (венд)	30	540 710	10070 5700	880 920	26500 14200	1270 860	960 270
Пд-11 Нагорнянская (венд)	13	107 157	20150 8700	1810 1220	44300 18000	1300 480	601 135
		б	•	,			•
Пд-10 Гораевская (ордовик)	47	251 117	9300 6391	2180 1400	33300 18100	4510 2300	2289 313
Пд-9 Хмельницкая (кембрий)	70	125 101	10300 7800	1340 900	36600 24700	3490 2060	1864 389
Пд-8 Студеницкая (венд)	68	303 152	9100 6100	2550 1960	33550 15400	4460 2200	2165 316
Пд-11 Нагорнянская (венд)	74	263 316	8950 4480	1370 930	37800 23600	4300 2400	2151 269
Пд-14 Ярышевская (венд)	99	254 480	19200 22500	5920 3700	52800 28300	7610 3600	2159 198
Пд-13 Могилевская (венд)	110	613 370	13100 6400	4630 2800	55200 28600	6600 2700	1989 151
Пд-15 Грушкинская (венд)	171	281 177	4500 2200	3030 1940	62600 33500	7200 3100	2084 134
Средний состав монацитов западной части УЩ [4]	940	390 491	9200 4300	3400 1950	69000 35000	7900 3700	2060 81

Примечание. Жирным шрифтом выделены средние значения, курсивом — СКО (1σ) по каждой выборке.

отсутствие в осадочных породах волынской и могилев-подольской серий монацитов рифейского возраста обусловлено высоким положением этой части кристаллического фундамента в рифее и начале венда. Химический состав монацитов (табл. 2) из пород грушкинской, могилевской и ярышевской свит существенно отличен от состава древних монацитов всех последующих стратиграфических подразделений. В них заметно большее содержание радиоактивных U и Th и наиболее высокое отношение U/Th, не повторяющееся позднее в монацитах отложений позднего венда и нижнего палеозоя. Примечательно, что среднее содержание всех проанализированных элементов в монацитах этих трех свит (табл. 2) очень близко к таковому (Sr \sim 390, Y \sim 9200, U \sim 3400, Th \sim 69000 г/т) в монацитах кристаллических пород западной части УЩ [4]. В свою очередь монациты грушкинской свиты резко отличаются от двух последующих необычно низким средним содержанием Y и наиболее высокой величиной отношения Sr/Y. Возможно, монациты этой пробы, представленной конгломератами и гравелитами, характеризуют гораздо более локальный (местный) источник поступления терригенного материала, чем монациты из песчаников могилевской и ярышевской свит. В пользу этого предположения свидетельствует и наиболее узкий диапазон возрастов обломочных монацитов в отложениях грушкинской свиты, охватывающий период времени от 2,4 до 1,7 млрд лет.

В целом же возрастные спектры рассматриваемых трех проб весьма подобны. В них доминируют монациты с возрастом 2,1-2,0 млрд лет, характеризующие наиболее мощное и повсеместное проявление на терри-

^{*}Монациты из песчаников среднего девона Волыни (проба ДВ) представлены двумя разновозрастными популяциями ДВ-1 и ДВ-2

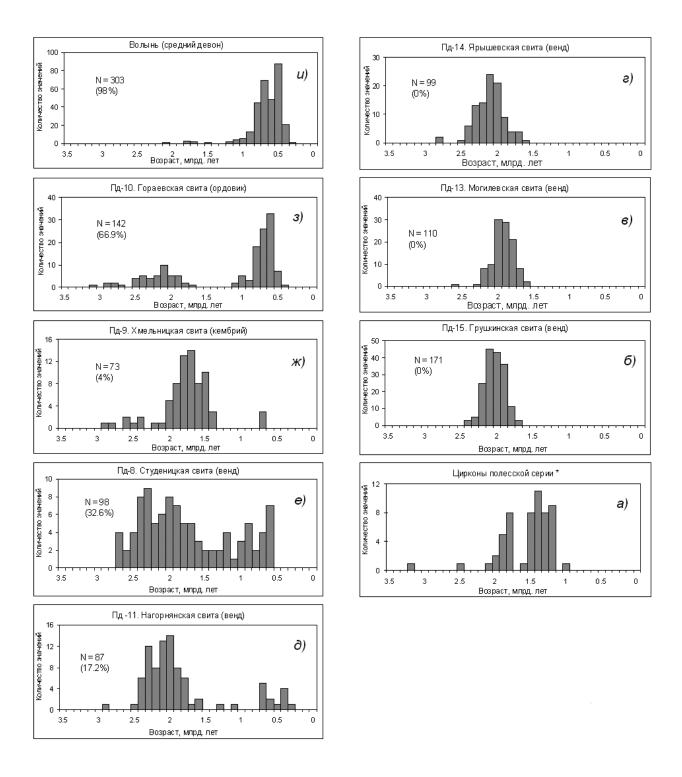


Рис. 1. Возрастные спектры монацитов из осадочных образований венда и палеозоя Запада Украины. N — количество исследованных кристаллов, в круглых скобках — процент молодых монацитов (возраст < 1,5 млрд лет)

^{* —} Данные заимствованы из работы [11].

тории УЩ процессов мигматизации и гранитообразования кировоградско-житомирского времени. Одновременно обращает на себя внимание несоответствие между ничтожным содержанием в осадках нижнего венда Подольского Приднестровья монацитов с возрастом более 2,5 млрд лет и представлениями о преимущественно архейском возрасте Днестровско-Бугского мегаблока УЩ, содержащем реликтовые ядра древнейших кристаллических пород юго-западной части ВЕП [12, 13].

В верхах могилев-подольской серии (джурджевские слои нагорнянской свиты) возрастной спектр монацитов заметно меняется (рис. 1, д): среди древних монацитов достаточно уверенно обособляются два максимума в области 2,3 и 2,0 млрд лет, появляются единичные кристаллы монацита рифейского возраста (1,3 и 1.1 млрд лет) и выделяется заметная популяция монацитов возрастного интервала 0,7-0,35 млрд лет. В этом спектре не совсем ясна природа очень молодых монацитов возрастом 0,4-0,35 млрд лет, отвечающих карбондевонской системе. Поскольку во всех остальных возрастных спектрах вендских отложений (см. рис. 1) подобные низкие значения возрастов отсутствуют, можно высказать предположение, что проба Пд-11 была загрязнена молодыми (например, меловыми) отложениями.

Присутствие молодых монацитов в песчаниках джурджевских слоев хорошо согласуется с появлением в них обломков кварцевых порфиров, неизвестных на прилегающих территориях УЩ и привнесенных в песчаники из иных областей сноса, вероятно, молодых складчатых систем байкалид, возникших к этому времени на месте нынешних Карпат [6]. Примечательно, что в это время меняются и химические характеристики древних монацитов, что уже отмечалось нами выше.

В отложениях позднего венда (студеницкая свита каниловской серии) возрастной спектр монацитов (рис. 1, е) приобретает наиболее сложный характер. В песчаниках этих отложений присутствует монацит практически всего возрастного диапазона докембрийских образований ВЕП, начиная от архейских (2,7 млрд лет) и до собственно вендских, причем последние образуют четкий самостоятельный максимум в области 0,7-0,6 млрд лет. Среди древних монацитов к двум отчетливо наметившимся еще в верхах могилев-подольской серии максимумам в области 2,0 и 2,3 млрд лет в породах кани-

ловской серии, добавляется третий максимум 2,7 млрд лет. Следует полагать, что с течением времени в венде денудации подвергаются все более глубокие горизонты кристаллического фундамента. Однако, как и прежде, монациты из раннеархейских кристаллических пород в отложениях каниловской серии отсутствуют. В целом гистограмма возрастов монацитов этого времени напоминает таковую для циркона из рифейских отложений Волыни (рис. 1, а), полученную в работе [11].

Наиболее любопытен возрастной спектр монацитов из этой серии в диапазоне времени 1,5-0,7 млрд лет, отвечающий рифею с характерными максимумами в 1,2 и 0,9 млрд лет. Какие-либо процессы монацитообразования на территории западной части Украины в этом временном интервале не известны. Как сообщается в [6], в некоторых песчаниках в средней части разреза каниловской серии до 50% по объему занимают обломки кислых и основных эффузивов, аргиллитов, кремнистых пород, железистых кварцитов, кварц-мусковитовых и др. сланцев, которые нигде не отмечаются в подстилающих толщах. Следует полагать, что обломки этих пород транспортировались водными потоками на сравнительно небольшие расстояния, в связи с чем сделанный в работе вывод о поступлении обломочного материала (в том числе монацита) из района Пракарпат представляется весьма убедительным. С другой стороны, в песчаниках каниловской свиты присутствует большое количество монацитов, имеющих такой же возраст, что и цирконы из рифейских отложений Волыни [11], для которых, как указывалось выше, предполагаются совершенно иные коренные источники, находящиеся далеко к северу и северо-западу от рассматриваемых территорий Украины. Иными словами, вероятным источником монацитов, особенно возрастного интервала 1,6-0,7 млрд лет в каниловских песчаниках могли быть рифейские осадочные толщи Волыно-Полесского района, как промежуточные коллекторы акцессорных минералов, генерация которых, возможно, происходила еще далее к северу от Волыно-Подольского осадочного бассейна. Четкий максим в 0,6 млрд лет на гистограмме монацитов каниловской серии (рис. 1, е) скорее всего отвечает событиям in situ — трапповому магматизму в пределах всей территории Волыно-Подолии, протекавшему 630-550 млн лет тому назад [10, 14].

Таким образом, внутриконтинентальный могилев-подольский осадочный бассейн [6] в начале джурджевского времени утратил свою изоляцию и объединился с бассейном Галицийской геосинклинали, а в каниловское время приобрел, очевидно, широкие связи с бассейнами Волыно-Полесского региона.

Возрастной спектр монацитов кембрийских отложений Подольского Приднестровья (рис. 1, ж) обладает рядом специфических признаков, отличающих его от спектров докембрийских осадочных пород, и, прежде всего, верхов венда, с которыми нижнекембрийские отложения имеют казалось бы непрерывную границу [6]. Во-первых, в них резко снижается доля монацитов с возрастом более 2,0 млрд лет, господствующих до этого во всех возрастных спектрах рифея и венда. Преобладают здесь монациты возрастного интервала 1,8-1,5 млрд лет, который отвечает крупнейшим та территории ВЕП событиям, связанным с формированием вдоль всей ее юго-западной окраины интрузий и вулканитов анортозитрапакивигранитной формации, начиная от Норвегии и Швеции на севере и кончая Украиной и Молдавией на юге. Логично поэтому связывать монациты указанного возрастного интервала с проявлениями магматизма этого времени, назовем его мазурско-коростенским по названиям наиболее молодого Мазурского плутона в Польше (1548-1499 млн лет) и наиболее древнего Коростенского плутона в Украине (1800-1760 млн лет). Цирконы такого возрастного диапазона зафиксированы также в кембрийских отложениях Польши [14] и рифейских отложениях Волыни [11]. В последних, несмотря на территориальную близость, цирконы собственно коростенского возраста (1,8-1,7 млрд лет) практически отсутствуют [11], хотя популяции цирконов более молодого возраста (1,6-1,5 млрд лет), отвечающие времени становления рапакивигранитных массивов Польши, Прибалтики и Карелии, достаточно обильны (рис. 1, а). Можно полагать поэтому, что вскрытие гранитоидов Коростенского плутона эрозионными процессами происходило гораздо позднее, скажем в нижнем палеозое, по сравнению с аналогичными интрузиями Польши и Балтийского щита, разрушение которых начато было еще в рифее.

Другой особенностью возрастного спектра монацитов из песчаников балтийской серии (рис. 1, ж), указывающей на переориентацию

областей сноса в кембрийский осадочный бассейн, является исчезновение или резкое сокращение монацитов возрастного интервала 1,3-0,4 млрд лет, достаточно полно представленных в пробе Пд-8 из подстилающих слоев каниловской серии венда (рис. 1, е).

Наконец, следует отметить изменение химического состава монацитов из кембрийских отложений Приднестровья (см. табл. 2), выражающееся в двукратном, по сравнению с монацитами из подстилающих пород, изменением среднего содержания Sr, U, и соответствующем уменьшении отношений U/Th и Sr/Y.

Возрастной спектр монацитов из ордовикских отложений (рис. 1, з) коренным образом отличается от таковых всех более древних стратиграфических горизонтов осадочной толщи Подольского Приднестровья: в нем резко сокращается относительное количество древних монацитов и, наоборот, возрастает доля молодых, отвечающих интервалу времени 1,1-0,4 млрд лет. Наметившееся еще в верхах венда (см. рис. 1, д, е) и нижнем кембрии (рис, 1, ж) бимодальное распределение возрастов обломочных монацитов, в песчаниках молодовской серии ордовика проявляется наиболее контрастно. Изолированные на гистограмме совокупности разновозрастных монацитов, несомненно, представляют различные коренные источники, однако вопрос об их местонахождении далеко не так очевиден. С равным успехом древние монациты в отложениях ордовика могли транспортироваться как из области денудации расположенного рядом кристаллического основания УЩ, так и из районов размыва перекрывающих его осадочных образований рифея или венда, уже содержащих и древние, и молодые монациты. По крайней мере, четкая геохимическая связь древних монацитов из ордовикских песчаников с кристаллическими породами западной части УЩ, так хорошо проявившаяся в нижнем венде, полностью нарушается (см. табл. 2). Отсутствует также преемственность химического состава молодых монацитов близкого возраста из ордовикских песчаников и, например, пород джурджевской свиты верхнего венда, с одной стороны и монацитами из девонских песчаников Волыни с другой.

Заканчивая рассмотрение возрастного спектра монацитов из песчаников ордовика Подольского Приднестровья, необходимо отметить факт присутствия среди них популяции с

весьма древними цифрами возраста, достигающего 2,9-3,1 млрд лет (рис. 1, з). Тенденция к появлению таких монацитов наметилась еще в отложениях кембрия (рис. 1, ж). На территории западной части УЩ породы с таким возрастом редки (Днестровско-Бугский мегаблок), но чаще встречаются в Среднеприднепровском мегаблоке [12].

На территории соседней Польши цирконы с возрастом 2,63–2,8 млрд лет обнаружены в кембрийских осадочных образованиях двух регионов: один из них (Окунево) располагается в пределах ВЕП, а другой (Лысогоры) вне ее — западнее зоны Тисье—Торнквиста [14]. Как и в песчаниках нижнего палеозоя Приднестровья, в кембрийских отложениях Польши, особенно района Лысогоры, содержится относительно большее количество одновременно самых древних (с возрастом > 2,6 млрд лет) и самых молодых (0,8–0,6 млрд лет) кристаллов (соответственно 20% и 40% от общего числа изученных).

Напрашивается вывод: источником цирконов архейского возраста в кембрийских отложениях Польши и синхронных с ними монацитов в нижнепалеозойских песчаниках Подольского Приднестровья могли быть не только породы кристаллического фундамента ВЕП, но и фрагменты палеоархейской коры, вовлеченные вместе с рифей-вендскими образованиями в байкальские складчатые сооружения на сопредельных с юго-западными границами ВЕП территориях. По-видимому, палеоархеским ядрам байкалид удалось в большей степени избежать последствий глобального, проявленного на всех докембрийских щитах, воздействия двухмиллиардного метаморфизма и гранитизации, затушевавших и снивелировавших первичные химические и изотопные характеристики акцессорных монацитов и цирконов из кристаллических пород УЩ.

Таким образом, как следует из изложенного выше фактического материала, использование хронологических харакетристик крупных популяций обломочного монацита в сочетании с его химическими особенностями помогает уточнять или по-новому трактовать некоторые аспекты палеогеографических обстановок формирования осадочных бассейнов. Как и в случае традиционных геологических и палеонтологических методов, успехи в решении вопросов реконструкции условий накопления осадочных комплексов зависят, естественно, от

степени детальности их изучения по разрезу и латерали. Это, в свою очередь, потребует многократного увеличения объема аналитических работ, выполнение которых, как нам представляется, возможно только с применением использованного авторами рентгенофлуоресцентного метода, отличающегося дешевизной и производительностью.

выводы

1. По хронологическим и геохимическим характеристикам обломочных монацитов в разрезе осадочных образований венда и нижнего палеозоя Подольского Приднестровья можно выделить несколько событий, связанных с существенной перестройкой палеогеографических условий питания морских бассейнов терригенным материалом.

Одним из важнейших среди них является джурджевское время, когда в осадках венда, до этого формирующихся за счет денудации исключительно кристаллического основания Восточно-Европейской платформы (присутствуют монациты только возрастного интервала 2,5–1,6 млрд лет), впервые появляются монациты из образований рифея и нижнего венда, располагавшихся, по-видимому, по большей своей части за пределами ВЕП.

Второе важное событие связано с границей кембрия и ордовика, когда в осадках нижнего палеозоя не только Приднестровья, но и Волыни резко снизилась доля древних монацитов, изменились их возрастной спектр и геохимические характеристики, а господствующими стали монациты временного интервала 0,8—0,5 млрд лет, коренные источники которых, вероятно, почти полностью располагались вне пределов ВЕП.

2. С течением времени вверх по разрезу венд – палеозойских отложений Волыно-Подольского осадочного бассейна намечается достаточно отчетливый тренд в сторону удревления в них возраста архей-палеопротерозойских монацитов, свидетельствующий либо о вовлечении в процессы денудации все более глубоких уровней кристаллического фундамента ВЕП, либо о поступлении к месту седиментации вместе с молодыми монацитами продуктов разрушения древнейших (в том числе палеоархейских) ядер из областей байкальской складчатости.

ВОЗРАСТ И СОСТАВ ОБЛОМОЧНОГО МОНАЦИТА ИЗ ОТЛОЖЕНИЙ ВЕНДА И НИЖНЕГО ПАЛЕОЗОЯ...

- Андреєв О.О. Фанерозойські монацити в осадовому чохлі Українського щита / Андреєв О.О., Степанюк Л.М., Андреєв О.В., Савенок С.П. // Збірник наукових праць УкрДГРІ. 2008. № 1. С. 63–64.
- 2. Андреєв О.В. Рентгеноспектральний флуоресцентний метод дослідження складу окремих мікрокристалів акцесорних мінералів / Андреєв О.В. // Збірник наукових праць УкрДГРІ. 2008. № 4. С. 75–84.
- 3. Андреєв О.О. Геохімічні та вікові особливості монациту з осадових утворень України / Андреєв О.О., Андреєв О.В., Савенок С.П. // Геохімія та рудоутворення. 2009. \mathbb{N}^2 27. С. 4-7.
- 4. Андреєв О.О. До питання про походження неопротерозой-палеозойських монацитів в осадових утворення України / Андреєв О.О., Степанюк Л.М., Андреєв О.В. [та ін.] // Геохімія та рудоутворення. 2010. № 28. С. 86–96.
- 5. Андреев А.А. К проблеме источника неопротерозойпалеозойских монацитов в осадочных образованиях Украины / Андреев А.А., Степанюк Л.М., Андреев А.В. [та ін.] // Збірник наукових праць Інституту геологічних наук НАН України. — 2010. — Вип.З. — С. 232– 238.
- Великанов В.А. Венд Украины / Великанов В.А., Асеева А.А., Федонкин М.А. К.: Наукова думка, 1983.
- 7. Савенок С.П. Установка для дослідження елементівдомішок у монокристальних об'єктах малої маси методом рентгеноспектрального флуоресцентного аналізу / Савенок С.П. // Екологія довкілля та безпека життєдіяльності. 2005. № 1. С. 82–85.
- 8. Савенок С.П. Геохимия цирконов и монацитов из аллювиальных и ледниковых отложений Украины (Восточно-Европейская платформа) и Антарктического полуострова (Западная Антарктида): сопоставление и возможная интерпретация / Савенок С.П., Шнюков С.Е., Андреев А.В., Морозенко В.Р. // Український Антарктичний журнал. № 3. 2005. С. 44–57.

- Цымбал С. Н. Возраст и коренные источники цирконов из титано-циркониевых россыпных месторождений Украинского щита / Цымбал С. Н., Гриффин В. Я., Белоусова Е. А. // XIII Международное совещание по геологии россыпей и кор выветривания. – Россия, Пермь, 22–26.08.2005.
- 10. Шумлянский Л.В. Возраст литосферного источника вендских трапов Волыни / Шумлянский Л.В., Носова А.А. // Доповіді національної академії наук України. 2008. № 1.
- 11. Шумлянський Л. U-Pb вік та ізотопний склад гафнію в цирконах, вилучених із пісковиків поліської серії. Проблема джерела уламкового матеріалу / Шумлянський Л., Матеюк В., Мельничук В. // Геолог України. N° 3. 2010.
- 12. Щербак Н. П. Геохронология раннего докембрия Украинского щита. Архей / Щербак Н. П., Артеменко Г. В., Лесная И. М., Пономаренко А. Н. — К: Наукова думка, 2005.
- Щербак Н.П. Геохронология раннего докембрия Украинского щита. Протерозой / Щербак Н.П., Артеменко Г.В., Лесная И.М., Пономаренко А.Н., Шумлянский Л.В. — К: Наукова думка, 2008.
- 14. Valverde-Vaquero P. U-Pb single-grain dating of detrital zircon in the Cambrian of central Poland: implications for Gondwana versus Baltica provenance studies / P. Valverde-Vaquero, W. Dörr, Z. Belka, W. Franke, J. Wiszniewska, J. Schastok // Earth and Planetary Science Letters. № 184. 2000. P. 225–240.
- ¹ Институт геохимии, минералогии и рудообразования имени Н.П. Семененка НАН Украины, Киев

E-mail: geotech@ukr.net

 2 — Киевский национальный университет имени Тараса Шевченко, Киев

E-mail: andreev@univ.kiev.ua

³ — Институт геологических наук НАН Украины, Киев